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SEPARATION AND PURIFICATION METHODS, 11(1), 29-69 (1982) 

TRANSPORT PROCESSES I N  LIQUID MEMBRANES: 
DOUBLE EMULSION SEPARATION SYSTEMS 

P i e t e r  Stroeve and Padma Prabodh Varanasi 
Department o f  Chemical Engineering 

Un ive rs i t y  o f  C a l i f o r n i a  
Davis, C a l i f o r n i a  95616 

INTRODUCTION 

The f i e l d  o f  membrane technology i s  c u r r e n t l y  undergoing a r a p i d  
expansion o f  the  areas o f  both research and i n d u s t r i a l  separat ion 
techniques. 
the need t o  develop r e l a t i v e l y  simple bu t  h i g h l y  se lec t i ve  separa- 
t i o n  techniques t h a t  are economically a t t r a c t i v e  when compared t o  
o ther  separation processes. An area o f  cur ren t  i n t e r e s t  i s  t h e  use 
o f  l i q u i d  membranes t o  separate species o r  t o  cont ro l  mass t r a n s f e r  
rates.  L i q u i d  membranes can be manipulated t o  s e l e c t i v e l y  separate 
a s p e c i f i c  so lu te  from a mixture, and even t o  e x t r a c t  a so lu te  
against i t s  concentrat ion grad ien t  by coupl ing i t s  f l u x  t o  the  f l u x  
o f  another so lu te  o r  by coupl ing t o  another external  fo rce  across 
the  membrane such as an e l e c t r i c a l  f i e l d .  

Developments i n  membrane technology have been guided by 

The advantage o f  using a l i q u i d  membrane over a s o l i d  polymer mem- 
brane i s  t h a t  the d i f f u s i o n  ra tes  o f  species i n  a l i q u i d  are con- 
s iderab ly  l a r g e r  than those found i n  so l ids ,  and fu r the r ,  t he  solu- 
b i l i t y  p roper t ies  o f  l i q u i d s  o f f e r  a wider range o f  p o s s i b i l i t i e s  
than normally found w i t h  so l i ds .  
membranes are i nhe ren t l y  less  s tab le  t o  mechanical forces than 
so l id - type  membranes. 
ported o r  unsupported. 

A disadvantage i s  t h a t  l i q u i d  

I n  general, l i q u i d  membranes are  e i t h e r  sup- 
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30 STROEVE AND VARANASI 

Supported l i q u i d  membranes can be he ld  i n  a porous s t ruc tu re  o r  

bounded on e i t h e r  s ide by two t h i n  polymeric f i lms .  The former 
method o f  support i s  more comnon and t h e  porous s t ruc tu re  can be a 
porous polymer membrane o r  f i l t e r  paper. The l i q u i d  membrane can be 
e i t h e r  i n  the form o f  a f l a t  p l a t e  o r  i n  tubu la r  s h e l l  geometry as 
i s  shown i n  Figure 1. 
gators who app l ied  l i q u i d  membranes conta in ing  c a r r i e r s  t o  poss ib le  

i n d u s t r i a l  separation processes. 

1 Ward and Robb were probably the  f i r s t  i n v e s t i -  

Unsupported l i q u i d  membranes are usua l ly  i n  the  form o f  double emul- 
s ion  drops. The add i t i on  o f  sur fac tan ts  i s  necessary t o  s t a b i l i z e  
the  drops. Figure 1 shows an example o f  a water /o i l /water  (W/O/W) 
system. For the  W/O/W system i t  i s  the  immiscible o i l  phase, separ- 
a t i n g  the  two aqueous phases, which i s  the l i q u i d  membrane across 
which se lec t i ve  d i f fus ion  takes place. 
l i q u i d  membrane i s  the immiscible water phase which separates the 
two o i l  phases. 
such as W/O/O i f  the two o i l  phases are immiscible. The subdrops 
contained i n  the  l a rge r  drop o f  the membrane phase can a lso  be sub- 
s t i t u t e d  by a s o l i d  phase. However, such systems have not y e t  been 
studied. 

For a O/W/O system, the  

It i s  i n  p r i n c i p l e  possible t o  devise o ther  systems 

The phase contained i n  the  subdrops i s  o f ten  re fe r red  t o  as the 
encapsulated phase. 
s ink  o r  source so lu t i on .  
as a s ink  f o r  the  removal of species from the  continuous phase. 
c e r t a i n  con t ro l l ed  release app l ica t ions ,  e.g., con t ro l l ed  release o f  
drugs, t he  encapsulated phase can serve as a source. 

I t s  primary purpose i s  t o  serve e i t h e r  as a 
I n  separat ion processes i t  serves p r i m a r i l y  

I n  

The use o f  double emulsion drops as separat ion media was f i r s t  pro- 
posed by Li?33s4 The advantages of t he  unsupported form o f  l i q u i d  
membranes i s  t h a t  the surface area t o  volume r a t i o  can be made la rge  
by using smal ler  drops. Further, the  reagent phase contained i n  the  
subdrops can be made i n t o  s inks by the  i n t roduc t i on  o f  reactants 
which combine i r r e v e r s i b l y  w i t h  the  species t o  be separated from t h e  
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32 STROEVE AND VARANASI 

continuous phase. The reac t i on  i s  chosen i n  such a manner t h a t  the  
product i s  re ta ined i n  the  reagent phase due t o  poor s o l u b i l i t y  and 
low d i f f u s i o n  ra tes  i n  t h e  l i q u i d  membrane phase. The i r r e v e r s i b l e  
react ion,  i f  k i n e t i c a l l y  f a s t  compared t o  d i f f u s i o n  rates,  causes the  
concentrat ion o f  the  d i f f u s i n g  species i ns ide  the  subdrops t o  be low, 
e f f e c t i v e l y  maximizing the  concentrat ion gradient across the l i q u i d  
membrane. 

I n  e i t h e r  form o f  l i q u i d  membrane, supported o r  unsupported, t he  
add i t i on  o f  reve rs ib le  c a r r i e r  compounds i n t o  the  l i q u i d  membranes, 
which are constrained t o  remain w i t h i n  the  membrane phase, can con- 
s iderab ly  increase the  mass t r a n s f e r  r a t e  o f  a p a r t i c u l a r  species. 
I n  add i t i on  t o  the  requirement t h a t  the  c a r r i e r  compound complexes 
revers ib ly ,  s e l e c t i v e l y  and r a p i d l y  with the species t o  be separated, 
o ther  desirable cha rac te r i s t i cs  a re  t h a t  the  c a r r i e r  and i t s  complex 
have a l a rge  d i f f u s i v i t y ,  and t h a t  the  c a r r i e r  can be dissolved i n  
l a rge  concentrat ions i n  the  membrane phase wh i le  i t  i s  i nso lub le  i n  
the ad jo in ing  phases. Considerable work has been reported on using 
c a r r i e r s  i n  f a c i l i t a t e d  t ranspor t s5  co-transport,6 and counter- 
t ranspor t   system^.^ It i s  the  use o f  c a r r i e r s  which has made the  
i n d u s t r i a l  u t i l i z a t i o n  o f  l i q u i d  membranes more a t t r a c t i v e .  

Transport processes i n  supported 1 i q u i d  membranes have been succ inc t l y  
discussed i n  a number o f  papers, f o r  example by Smith e t  a1.' and 
Way e t  a1.l' I n  t h i s  a r t i c l e  the  problem o f  t ranspor t  processes 
occurr ing i n  unsupported membranes w i  11 be addressed. 
the e f f e c t  o f  drag forces on the  s t a b i l i t y  o f  double emulsion drops 
and the  model l ing o f  mass t r a n s f e r  i n  double emulsions w i l l  be d e a l t  
wi th.  

I n  p a r t i c u l a r ,  

HYDRODYNAMIC STAB I L ITY 

The problem t h a t  i s  i n h i b i t i n g  the  app l i ca t i on  o f  double emulsions 
i n  i n d u s t r i a l  equipment i s  the  s t a b i l i t y  o f  the  drops i n  contact ing 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 33 

equipment, i .e.  mixers, pumps, e tc .  
o f  double emulsions as a separation system i n  i n d u s t r i a l  processes 
has no t  y e t  been poss ib le  due t o  problems o f  s t a b i l i t y . ”  
standing o f  the  hydrodynamic s t a b i l i t y  o f  double emulsion drops i s  
necessary t o  l o g i c a l l y  s e t  operat ing cond i t ions  f o r  con tac t ing  
equipment. 

A t  present, the  widespread use 

An under- 

Ac tua l l y  the  s t a b i l i t y  o f  double emulsionscan be o f  a t  l e a s t  two types: 
thermodynamic and hydrodynamic. 
dynamical ly stable.  
as t o  reduce the t o t a l  i n t e r f a c i a l  area. The sur fac tan t  t h a t  i s  
added t o  the  membrane phase i n  the  nreparat ion o f  these emulsions 
can s u b s t a n t i a l l y  , though no t  completely, reduce the  coalescence 
ra te .  
i s  sho r t  enough so t h a t  the thermodynamic s t a b i l i t y  i s  no t  t he  cru- 
c i a l  f a c t o r  i n  the  design o f  equipment. 

I n  r e a l i t y ,  no emulsion i s  thermo- 
The emulsion drops always tend t o  coalesce so 

The residence t ime o f  these emulsions i n  the  mixing equipment 

On the  o ther  hand, the  hydrodynamic s t a b i l i t y  can p lay  a v i t a l  r o l e  
i n  the  design o f  equipment used w i t h  double emulsions. 
s t a b i l i t y  i s  a measure o f  the  res is tance o f fe red  by the  emulsion 
drops t o  the  viscous and i n e r t i a l  drag forces ac t i ng  on them due t o  
the  motion o f  the  continuous phase. 
t he  r e s i s t i n g  forces (mainly surface tension forces) , the  drop 
breaks. 
i s  the l i b e r a t i o n  o f  some o f  the  encapsulated s o l u t i o n  i n t o  the  con- 
t inuous phase which leads t o  a reduc t ion  i n  the  e x t r a c t i o n  e f f i c i e n c y  
and ex t rac t i on  ra te .  An understanding o f  the  s t a b i l i t y  o f  double 

emulsions when subjected t o  hydrodynamic forces i s  necessary t o  s e t  
the  co r rec t  operat ing condi t ions f o r  equipment. 

Hydrodynamic 

When these drag forces exceed 

The consequence o f  the  breaking o f  double emulsion drops 

The f i r s t  study on s t a b i l i t y  was done exper imental ly by Hochhauser 
and Cussler. 8 y 1 2  The l i q u i d  membranesystems used i n  t h i s  study were 
made up i n  the  fo l l ow ing  way: 

i. encapsulated phase - 0.1 M sodium dichromate so lu t i on .  
ii. membrane phase - s o l u t i o n  o f  Span 80 i n  an organic solvent.  
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34 STROEVE AND VARANASI 

iii. continuous phase - water. 

The s o l u b i l i t y  o f  sodium dichromate i n  t h i s  membrane i s  n e g l i g i b l y  
small, and any dichromate found i n  the water phase i s  due t o  the 
breakage o f  the membranes. 
o f  a percentage breakup defined as the  r a t i o  o f  chromium present i n  
the  water phase t o  the t o t a l  amount present i n  the  system. 
o f  the double emulsion drops i n  a container w i t h  the continuous 
phase was accomplished w i t h  a 2-inch, 3-vane, marine type p r o p e l l e r  
w i t h  a 50" p i t ch .  

They expressed t h e i r  r e s u l t s  i n  the  form 

S t i r r i n g  

The s t i r r i n g  r a t e  and the  concentrat ion o f  sodium dichromate were 
found t o  have no e f f e c t  on the breakup. Rapid breakup dur ing  an 
i n i t i a l  per iod  w i t h  no f u r t h e r  breakup was observed. Hochhauser and 
Cussler explained t h e i r  r e s u l t s  by pos tu la t i ng  the existence o f  two 
types o f  l i q u i d  membranes, one which i s  e a s i l y  and r a p i d l y  breakable 
and another which i s  s tab le  f o r  longer times. Another p laus ib le  
explanat ion f o r  t h i s  t ime dependency can be t h a t  the emulsion drops, 
a t  the end o f  t h i s  i n i t i a l  per iod,  have reached a s i z e  a t  which drag 
forces t r y i n g  t o  rup ture  t h e  drops could n o t  overcome the  surface 
tension forces ho ld ing  the  drops together (a/a). 

The var iab les  t h a t  showed pronounced in f luence on the  s t a b i l i t y  were 
v i scos i t y  o f  the  membrane so lu t i on ,  volume f r a c t i o n  o f  t he  subdrops 
w i t h i n  the  emulsion drop, and the  concentrat ion o f  t he  sur fac tan t .  
A 50% reduct ion o f  the  membrane rup ture  requ i red  e i t h e r  a 1500% 
increment i n  the v i s c o s i t y  o f  t he  membrane s o l u t i o n  o r  a 25% reduc- 
t i o n  i n  the  volume f r a c t i o n  o f  t he  subdrops o r  a 0.2 w t %  increment 
i n  the sur fac tan t  concentrat ion (Fig. 2). The r e s u l t s  f o r  t he  vo l -  
ume f r a c t i o n  o f  subdrops i s  surpr is ing .  I n  general, an increase o f  
t h e  volume f r a c t i o n  o f  t he  subdrops increases the  v i s c o s i t y  o f  t h e  
emulsion drop and so one would expect a p o s i t i v e  e f f e c t  on the  s ta -  
b i l i t y  o f  t he  emulsion. 

Mar t in  and Davies" performed some s t a b i l i t y  studies along w i t h  
t h e i r  mass t r a n s f e r  studies on the  e x t r a c t i o n  o f  copper from 
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3" 
E an 

H 
B 

0.01 0.03 0.1 0.3 
Surfactant Concentration. wt. % 

4 10 30 100 300 
Viscosity, CP 

0 0.2 0.4 0.6 0.8 1.0 
+ =  Volume Fraction H20 in Emulsion 

Figure 2: E f f e c t  o f  sur fac tan t  concentrat ion, membrane v i s c o s i t y  
and volume f r a c t i o n  of the  encapsulated phase on the  
percent o f  membrane breakage (100 0 .  Redrawn from 
Hochhauser and Cusslcr. 

aqueous feed s o l u t i o n  through a membrane phase cons is t ing  o f  a com- 
mercial  che la t i ng  agent (L IX  64N), an organic d i l uen t ,  and a non- 
i o n i c  sur fac tan t .  
The emulsion breakup was estimated by measuring the  concentrat ion o f  
hydrogen i o n  i n  the  continuous phase i n  excess o f  what should 
a c t u a l l y  be present (each copper i on  r e s u l t s  i n  a counter t r a n s f e r  
o f  two H+ i ons) .  

The encapsulated phase used was H2S04 so lu t ion .  
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36 STROEVE AND VARANASI 

Mar t in  and Davies reported t h a t  the  emulsion breakup depends on t h e  
fo l low ing :  

i. the  s i ze  o f  the  subdrops 
ii. the  operat ing cond i t ions  i n  the  mixing device 
iii. the  type o f  sur fac tan t  used. 

The smal ler  the  s i ze  o f  t h e  subdrops, t he  greater was t h e  s ta -  
b i l i t y .  The s i ze  o f  t he  subdrops depended on the  type o f  mixing 
device used i n  the  i n i t i a l  formation o f  the  W/O emulsion before 
i n t roduc t i on  i n t o  the  continuous phase. They f u r t h e r  observed a 
dependence o f  the  % breakdown on the  impe l l e r  speed i n  a mixing 
vessel, as shown i n  Fig. 3. Breakage was found t o  increase l i n e a r l y  
w i t h  t ime i n  almost a l l  cases. This i s  i n  cont ras t  w i t h  the  f i n d -  
ings o f  Hochhauser and Cussler.8 Use o f  so rb i tan  mono-laurate gave 
greater breakage than sorb i  tan  mono-oleate. Presumably the  i n t e r -  
f a c i a l  tension w i t h  so rb i tan  mono-laurate was lower b u t  those values 
were not reported. 

Recent inves t iga t ions  on the  s t a b i l i t y  o f  emulsion drops are those 
o f  Takahasi e t  a1.,l4 K i t a  e t  a1.,l5 Tanaka e t  a1.16 and Kondo e t  
al.17 I n  general s t a b i l i t y  was a lso  measured using a t r a c e r  tech- 
nique. Release o f  the t r a c e r  (usua l l y  a s a l t )  from the  subdrops 
was a d i r e c t  measure o f  the  breakage o f  double emulsion drops since 
the  t r a c e r  t ranspor t  through the  l i q u i d  membrane was neg l i g ib le .  

Breakage was measured i n  terms o f  the f a c t o r  5 def ined as the  
r a t i o  o f  moles of t r a c e r  i n  the  continuous phase t o  the  t o t a l  amount 
o f  t race r  i n i t i a l l y  present i n  the  subdrops. The e f f e c t s  o f  the 
fo l l ow ing  var iables were studied: 

i. t r a c e r  o r  s a l t  concentrat ion 
ii. a g i t a t i o n  t i m e  

i v .  concentrat ion o f  emuls i fy ing  agent 

S im i la r  t o  the  studies o f  Hochhauser and Cussler and Mar t in  and 

iii. size  o f  the emulsion drops 

v. pH o f  the  subdrops 
8 
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0 2 4 6 8 10 12 14 16 18 

EXTRACTION TIME (minr) 

Figure 3: In f luence o f  the  type o f  sur fac tan t  and mixing speed 
on percent o f  membrane breakage (100 5 ) :  

A )  Sorbi tan mono-laurate, mixer speed 300 rpm; 

B) Sorbi tan mono-laurate, mixer speed 250 rpm; 

C )  Sorbi tan mono-oleate, mixer speed 300 rpmr, 

D )  Sorbi tan mono-oleate, mixer speed 250 rpm. 

Redrawn from Mar t in  and Davies. 

Davies,” the  parameter 5 i s  an i n d i c a t i o n  o f  t he  amount o f  sub- 
drops expe l led  i n t o  the  continuous phase. The mechanism o f  t h i s  
process i s  no t  e n t i r e l y  c lea r  although i t  presumably occurs when 
double emulsion drops break up i n t o  two o r  more drops when hydro- 
dynamic forces are exerted on the  drops. 
e n t l y  releases some subdrops i n t o  t h e  continuous phase. 

The breakup process appar- 
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38 STROEVE AND VARANASI 

Hochhauser and Cussler d i d  no t  observe a s i g n i f i c a n t  e f f e c t  on s a l t  
concentrat ion. K i t a  e t  a l ?  reported a decrease i n  5 with 
increasing s a l t  (NaC1) concentrat ion i n  the range o f  0.3 - 0.5 w t % .  
Takahasi e t  a1.14 observed very l i t t l e  e f f e c t  up t o  a concentrat ion 
o f  2 wt%, above which 5 increased w i t h  increasing concentrat ion o f  
t race r .  S t a b i l i t y  was found t o  decrease w i th  increasing s a l t  con- 
cen t ra t i on  i n  the continuous phase. 

According t o  Hochhauser and Cussler,8’12 emulsion drops broke up t o  
a c e r t a i n  time, beyond which there  was no f u r t h e r  breakup. They 
d i d  no t  repo r t  any r e l a t i o n  between 5 and time. 
observed a l i n e a r  re la t i onsh ip  between 5 and t ime. Takahasi e t  
a1.14 reported t h a t  an i n i t i a l  non l inear  behavior precedes a constant 
r a t e  period. 

13 Mar t in  and Davies 

Takahasi e t  a1.14 showed t h a t  the  double emulsion i s  more s tab le  
when the drop s i ze  o f  the  emulsion i s  smaller. 
smal ler  drops the  surface tension force, which holds the  drop t o -  
gether, i s  more s i g n i f i c a n t  than t h a t  f o r  l a rge r  drops. 

Obviously f o r  

Most o f  the  studies on the  e f f e c t  o f  the  sur fac tan t  concentrat ion 
( i n  the l i q u i d  membrane phase, Cs)  on the  breakage ind ica ted  t h a t  
5 decreased w i t h  increasing C,. Kondo e t  a1 .l reported a sudden 
decrease i n  5 a t  about 1.0 w t %  o f  surfactant.  
observed 5 t o  depend on C, ra i sed  t o  the  -1.5 power. 
c u l t  t o  compare such r e s u l t s  s ince the double emulsion systems were 
d i f f e r e n t  i n  each case. Although add i t i on  o f  sur fac tan t  should 
lower the  i n t e r f a c i a l  tension between 1 i q u i d  membrane and continuous 
phase g i v ing  r i s e  t o  a reduced resistance o f  t h e  surface tension 
force t o  hydroanamic forces, add i t i on  o f  sur fac tan ts  appears t o  be 
bene f i c ia l  i n  prevent ing the  subdrops t o  be expel led i n  the cont inu- 
ous phase when the  double emulsion drops break i n t o  smal ler  f rag-  
ments. 

14 Takahasi e t  a l .  
It i s  d i f f i -  

Takahasi e t  al.14 a lso  s tud ied  the  e f f e c t  o f  pH on 6. 
were more s tab le  f o r  pH values between 3 and 11.5. 

The emulsions 
Outside t h i s  
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 39 

range the  emulsion breakage was substant ia l ,  poss ib lydue t o  the  
increase o f  e i t h e r  hydrogen o r  hydroxyl i o n  as was found w i t h  
increased s a l t  concentrat ion. 

The main drawback o f  t he  above studies i s  t h e i r  l i m i t e d  a p p l i c a b i l -  
i t y .  The studies are useful on l y  t o  the  s p e c i f i c  condi t ions 
under which the experiments were performed. Many o f  the  systems 
were d i f f e r e n t  and mixing o f  the  double emulsion drops i n  the  con- 
t inuous phase was on ly  con t ro l l ed  by f i x i n g  the  rpm o f  the  s t i r r e r .  
Obviously, shear ra tes  i n  the mixer were r a d i c a l l y  d i f f e r e n t  from 
p o i n t  t o  po in t .  Drops were exerted t o  varying degrees o f  i n e r t i a l  
and viscous forces. De ta i l s  o f  the  experimental cond i t ions  were 
o f ten  no t  f u l l y  spec i f ied .  
mounted i s  by c o r r e l a t i n g  the breakup data i n  terms o f  dimensionless 
quan t i t i es  t h a t  can be used i r respec t i ve  o f  the  experimental 
condi t ions and mater ia ls .  Such an approach has been made by 
Stroeve e t  a l .  , 18,19 who have s tud ied  the e f f e c t  o f  viscous forces 

on double emulsions. The basis o f  t h i s  work i s  the  c lass i ca l  work 

o f  Taylor. 

A way by which the  drawback can be sur-  

20 

Taylor" was the  f i r s t  i nves t i ga to r  who s tud ied  both exper imental ly 
and t h e o r e t i c a l l y  the  deformation and breakup o f  a drop o f  a New- 
ton ian  1 i q u i d  suspended i n  another immiscible Newtonian 1 i q u i d  
undergoing de f inab le  f i e l d s  o f  f low (simple shear and plane hyper- 
b o l i c  f lows).  Thereafter numerous researchers became in te res ted  i n  
t h i s  subject .  O f  p a r t i c u l a r  importance are the  experimental works 
o f  Rumscheidt and Mason," Karam and Bel l inger,22 Torza, Cox and 
Mason23 and f i n a l l y  o f  Grace!4 whose experiments cover a la rge  
range o f  p from t o  10 (p i s  the r a t i o  o f  t h e  v i s c o s i t y  o f  
the  dispersed phase t o  the  v i scos i t y  o f  the  continuous phase). 

3 

Neglecting s i g n i f i c a n t  deviat ions o f  the drop from spher i c i t y ,  t he  
theo re t i ca l  problem o f  breakup was tack led  f i r s t  by Taylor" and 
then by Chaffey and BrennerP5 and Cox26, and f i n a l l y  by Barthes- 
Biesel  and A c r i ~ o s . ~ ~  These theor ies  are known as small deformation 
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40 STROEVE AND VARANASI 

theor ies,  and are successful i n  the h igh-v iscos i ty  r a t i o  range where 
the  drops deform on ly  by a small amount before they break, usua l ly  
i n t o  two smaller drops. On the o ther  hand, the  drops are observed 
t o  become very long and slender before breakup i n t o  several smal ler  
drops when the v i scos i t y  r a t i o ,  p, i s  much smal ler  than un i t y .  To 
represent t h i s  behavior, i t  i s  necessary t o  have a theory t h a t  
takes advantage o f  the  slenderness o f  t he  drop ra the r  than extend- 
i n g  the  small deformation theor ies  which bas i ca l l y  invo lve  con- 
s t r u c t i n g  a so lu t i on  by using per tu rba t ion  expansions o f  the appro- 
p r i a t e  var iables i n  terms o f  a deformation parameter E 

(=  - ). This parameter i s  a measure o f  the  r a t i o  o f  viscous 
forces t o  surface tension forces. was the  f i r s t  one t o  
use such a technique t o  determine the  maximum value o f  E = E~ f o r  
which a long slender drop can e x i s t  i n  the system before breakup 
f o r  the  case o f  axisymnetric s t r a i n i n g  f low. This theory was l a t e r  

31 extended f o r  o ther  f low s i t ua t i ons  by Buckmaster, *’ y30 Acr i  vos , 
Hinch and Acrivos, 32’33 and by H i n ~ h . ~ ~  These theor ies  g ive  excel- 
l e n t  p red ic t ions  o f  drop breakup f o r  low values o f  p. 
Ra l l  ison and Acr i  vos 35’36 developed a numerical scheme t h a t  i s  
appl icable over the  e n t i r e  range o f  p. 
were a l l  concerned w i t h  the  dispersions o f  Newtonian drops i n  New- 
ton ian  l i q u i d s .  Studies on the  behavior o f  v i scoe las t i c  drops and 
threads i n  Newtonian and v i scoe las t i c  media have been done by Gau- 
t h i e r  e t  a l .  ,37 by Flumerfel t ,  38s39 and by Middle~nan.~’ Chin and 
Han41’42 studied the deformation o f  drops i n  nonuniform f lows. 

GPca 
U 

Recently, 

The studies mentioned above 

Most o f  t he  above-mentioned experimental studies are r e s t r i c t e d  t o  
e i t h e r  plane hyperbol ic f low o r  simple shear f low. 
achieved by choosing an appropr iate apparatus amongst the fou r  
shown i n  Fig.  4. 
f l ow  wh i le  any o f  the  o ther  th ree  produces simple shear f low. 
Stroeve e t  a l .  ’*”’ used a counter - ro ta t ing  cone and p l a t e  visco- 
meter t o  study t h e  deformation and breakup o f  both homogeneous New- 
ton ian  drops and double emulsion drops. The angle o f  the cone used 
was 2 O ,  a value low enough f o r  t he  shear r a t e  t o  be constant through- 

These can be 

The f o u r - r o l l e r  apparatus produces plane hyperbol ic 
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A 
Fow- Roller D e v i o  

Sprockets Attached to 
P l t x i i l a s s l  r Variable Speed Drive 

35 mm 
Film 

B 
Parallel - Band Device 

(as Modified by Flumerfelt) 

Camera or 
Microscope Light 6 Source 

Viscous 

Microscope 
Objective 

Fluid of Low Viscosity 

C D 
Couetto Device Cone and Plate Device 

Figure 4: Types o f  devices used t o  study the behavior o f  drops 
i n  plane hyperbol ic (A)  and simple shear f l ow  (B,C,D). 

out  t he  viscometer. 
inver ted  microscope over which the  viscometer i s  mounted. 
and p l a t e  ro ta ted  a t  equal bu t  opposite speeds. 
sions studied were o f  W/O/W type and the  continous phases were 
corn syrups o f  d i f f e r e n t  v i scos i t i es .  
ene blue dye was added t o  the  subdrops so t h a t  s i z e  analysis could 
be performed. 
7 pm w i t h  a number average o f  2.5 pm. The sur fac tan t  used t o  s ta -  
b i l i z e  the membrane phase was Span 80 (sorb i tan  mono-oleate) and i t  

The d i l u t e  dispersion was observed through an 
The cone 

The double emul- 

For b e t t e r  contrast ,  methyl- 

The diameter o f  the subdrops ranged from 1 pm t o  
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44 STROEVE AND VARANASI 

amounted t o  about 10% o f  t h e  t o t a l  membrane phase. The s i ze  o f  t he  
i n i t i a l  emulsion drops were about 80-100 p. 

Figures 5 and 6 show photographs o f  the breakup o f  both Newtonian 

i n t e r e s t i n g  t o  note t h a t  t he  double emulsion drops break up i n  the  
same way t h a t  Newtonian drops do. 
t i o n  from spher i c i t y ,  a Rayleigh i n s t a b i l i t y  wave appears on the  
drop's surface. 
breaking, so t h a t  the  drop breaks i n t o  main fragments. The t h i n -  
n ing  o f  the  nodal regions o f ten  leads t o  the  generation o f  small 
drops between the  main fragments, and these small drops are known 
as s a t e l l i t e  drops. 

and double emulsion drops as observed by Stroeve e t  a l .  18919 It is 

Upon reaching a maximum deforma- 

The nodal regions o f  t he  wave then t h i n ,  eventua l l y  

When Newtonian drops are suspended i n  another Newtonian l i q u i d ,  i t  
can be shown t h a t  breakup, i n  the  case o f  n e g l i g i b l e  i n e r t i a l  
forces, can be represented by the  two main dimensionless groups, 
namely, t he  deformation parameter a t  breakup, EB, and the  v i s c o s i t y  
r a t i o  p. 
s i m i l a r  t o  Newtonian drops, i t  i s  reasonable t o  co r re la te  the  break- 
up data o f  double emulsion drops i n  terms o f  these same dimension- 
l ess  groups. 

Since the  mechanism o f  breakup o f  l i q u i d  membranes i s  

Figures 7 and 8 show the  breakup data o f  both Newtonian drops and 
double emulsion drops containing d i f f e r e n t  volume f rac t i ons  o f  sub- 
drops. 
Accounting f o r  t he  d i f fe rences  i n  the  types o f  apparatus used and the  
s i z e  o f  d rop le ts  studied, the  breakup data f o r  Newtonian drops agree 
reasonably we1 1 w i  t h  those obtained by the  researchers. 
Except f o r  t he  r e s u l t s  o f  Karam and Bell inger,22 the  minimum value 
o f  E~ f o r  Newtonian drops i s  around 0.3 - 0.75. According t o  
Grace,24 Karam and Be l l inger "  used the  equ i l i b r i um surface ten- 
sion, which caused the minimum value o f  E~ t o  be higher.  A l l  the  
above studies i nd i ca te  t h a t  drops cannot be broken u p f o r  p > 4.0. 
The second asymptote observed by Karam and Be11ingerZ2 i s  poss ib ly  
due t o  equipment l i m i t a t i o n s ,  as discussed by Grace. 

Breakup i s  co r re la ted  i n  terms o f  EB as a func t i on  o f  p. 

18,22,23,24 

24 
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loo I 1 I r 
A = Karam and Bellinger (1968) 
B = Grace ( 1971,1982 ) 
C=Torza et al. (1972) 
D =Stroeve et al. (1981) 
E =Stroeve et al. (1981) A 

- Newtonian Drops ---- Double Emulsion Drops 

0.1 I I I 

0.001 0.01 0.1 1 10 - 
or - p =  - 

pc y 

Figure 7: Experimental r e s u l t s  f o r  drop breakup, Resul ts f o r  
curyes A, R ,  C,  and D are f o r  homogeneous Newtonian 
drops suspended i n  a Newtonian phase. Curve E i s  f o r  
double emulsion drops suspended i n  a f,Jewtonian phase 
(H/O/lf) .  E~ i s  the  va lue  o f  t he  breakup parameter E 
a t  drop breakage, 

For double emulsion drops, the  smal le r  the volume f r a c t i o n  o f  the  

subdrops, the  l esse r  i s  the  s h i f t  o f  the  breakup curve along the 
ho r i zon ta l  ax is ,  r e l a t i v e  t o  the  breakup curves o f  t he  homogeneous 
Newtonian drops. 
behavior o f  Newtonian drops. As Fig. 9 shows, the v i s c o s i t y  behav- 
i o r  o f  t h i s  double emulsion i s  Newtonian wh i l e  the o ther  emulsions 
(Ld) were non-Newtonian. 
parameter i s  smal ler  f o r  15 and 39 compared t o  t h a t  f o r  62 ~ 0 1 % .  
Note t h a t  the apparent v i s c o s i t y  o f  the  double emulsion i id  i s  t h a t  a t  
t he  shear r a t e  p r e v a i l i n g  i n  t h e  continuous phase. 

The 15 vo l% emulsion drops approach the  breakup 

The minimum i n  the  value o f  the breakup 

The u t i l i t y  o f  
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0.5 

0.1 

m 
W \ 

/ /  - 
\ 

\ ---\ - @ @  - Subdrops 0 

- 15 vol. % -+. 
- x-/ - - 
- 

Homogeneous Drops 
Double Emulsion Drops 

- 
---a 

I I ' ' 1 ' 1 ' 1  I I I I I I I I  I I I 1  

pd Pd 

Pc Pc 
p =  - or- 

FFgure 81 Experimental r e s u l t s  f o r  the breakage o f  double emul- 
s ion  drops w i t h  d i f f e r e n t  volume f r a c t i o n s  o f  sub- 
drops. The s o l i d  curve i s  f o r  homogeneous Newtonian 
drops and corresponds t o  curve D i n  Figure 7. The 
62 vo l% subdrop curve i s  i d e n t i c a l  t o  curve E i n  Fig- 
u re  7. 

these breakup curves i s  t h a t  i f  one knows the  l a rges t  drop s i ze  o f  
t he  double emulsion, one can f i n d  the  maximum shear r a t e  t h a t  can 
be app l ied  w i thout  breaking the  drops. 

There are several poss ib le  explanations f o r  t he  s h i f t  i n  t he  breakup 
curves and the  v a r i a t i o n  o f  the  minimum o f  t h e  breakup parameter. 
The decrease i n  the  minimum o f  the  E~ may poss ib ly  be due t o  the 
heterogeneity o f  the  double emulsion drops. A t  lower volume f rac-  
t ions ,  t he  subdrops tend t o  form aggregates, a process t h a t  might 
a f f e c t  the  i n te rna l  c i r c u l a t i o n .  This e f f e c t  on the  i n t e r n a l  c i r cu -  
l a t i o n  may reduce the s t a b i l i t y .  (The degree o f  s t ress  generated 
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CI 

N 
E 
\ 

rP 

100 

10 

1 

0.1 

Figure 9: Apparent v i s c o s i t y  o f  the water i n  o i l  emulsions as 
a func t i on  o f  shear r a t e  and the volume f r a c t i o n  o f  
subdrops (encapsulated phase). 

w i t h i n  the  drop depends on the  c i r c u l a t i o n  i ns ide  the  drop. The 
drop breaks up on ly  when the  d i f f e rence  i n  the  ex terna l  and i n t e r n a l  
stresses exceeds the  surface tension force.)  The e l a s t i c  nature o f  
the 62 vo l% emulsion may be the  cause o f  the  higher values o f  E ~ .  

E l a s t i c  forces may a i d  the  surface tension forces i n  r e s i s t i n g  the  
viscous drag forces, thereby increasing the shear r a t e  necessary t o  
break up the  drop. 

Another explanat ion i s  based on the  cohesion o f  t he  drop phase. 
low volume f rac t ions ,  the cohesion o f  the  drop i s  no t  l i k e l y  t o  be 
a f fec ted  but, as soon as the  drop i s  drawn out  i n t o  a long thread, 
the  thickness o f  the l i q u i d  thread obviously cannot become less  
than the  average s i ze  o f  the  subdrops, so E i s  lower. 
drop i s  completely packed (62 vol%), the cohesive forces among the  

A t  

When the  B 
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subdrops increase the cohesion o f  the  ove ra l l  drop, thereby increas- 

i n g  E ~ .  

- 
As mentioned e a r l i e r ,  pd i s  ca lcu la ted  a t  the  shear r a t e  p r e v a i l i n g  
i n  the  continuous phase. Obviously t h i s  i s  no t  the t r u e  shear r a t e  
w i t h i n  the  drop. Since the  i n t e r n a l  subdrops undergo r o t a r y  f low 
ins ide  the main drop and i n  add i t i on  may sp in  around t h e i r  axes, 
t h i s  shear r a t e  could be l a rge r  compared t o  the  shear r a t e  p r e v a i l -  
i ng  i n  the  continuous phase. Since the emulsion i s  shear th inning, 
i t s  v i scos i t y  would be lower a t  h igher shear ra tes  and t h i s  would 
cause the curves t o  s h i f t  back t o  lower values o f  p. 

The r e s u l t s  shown i n  Figures 7 and 8 are consistent w i t h  the  no t i on  
t h a t  smaller double emulsion drops are more s tab le  i n  a given shear 
r a t e  than la rge  drops. Also the lower the  i n t e r f a c i a l  tension 
between drop and continuous phase (a), the smal ler  the  surface ten- 
s ion  force a/a. Apparently no studies have been conducted on the  
e f f e c t  o f  i n e r t i a l  forces on the s t a b i l i t y  o f  double emulsion drops. 
The r e s u l t s  f o r  viscous forces are v a l i d  f o r  low Reynolds number 
f low f o r  the  drops. It i s  possible t h a t  i n  contact ing equipmentthe 
drop Reynolds number i s  s u f f i c i e n t l y  l a rge  t h a t  i n e r t i a l  forces p lay  
an important ro le .  

I n  none o f  the  previous studies has the  mechanism(s) by which sub- 
drops are expe l led  i n t o  the  continuous phase dur ing double emulsion 
breakup been i d e n t i f i e d .  Stroeve e t  a l .  l8,l9 have observed a 
decrease i n  the  volume f r a c t i o n  o f  subdrops contained i n  the  
smal ler  double emulsion drop fragments bu t  the  actual  release o f  
subdrops could no t  be observed. The drop breakup becomes a very 
rap id  process once the nodal regions s t a r t  necking. Subdrops con- 
ta ined i n  t h i s  region most l i k e l y  escape i n t o  the  continuous phase 
when the  nodal region i s  pu l l ed  i n t o  a l i q u i d  thread because the 
much smal ler  sate1 1 i t e  drops between the  main drop fragments o f t e n  
are devoid o f  subdrops. 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 49 

The problem o f  double emulsion breakup due t o  swe l l i ng  i n  the  pres- 
ence o f  an osmotic pressure grad ien t  i n t o  the  double emulsion drop 
has no t  been adequately studied. 
important i n  some o f  the  previous s tud ies  on the  s t a b i l i t y  o f  double 
emulsions i n  mix ing  vessels Ce.g. , t h e  e f f e c t  o f  s a l t  concent ra t ion) .  

The double emulsions o f  Stroeve e t  a l .  18” were osmotical l y  balanced 
and s tab le  over hours when no shear was present. Another s t a b i l i t y  
problem a r i ses  when the  double emulsion drops c o l l i d e  w i t h  vessel 
wa l l s  o r  the  a i r /water  i n te r face ,  Due t o  the  r e l a t i v e l y  low i n t e r -  
f a c i a l  tens ion  o f  the continuous and the  l i q u i d  membrane interphase, 
the  spreading c o e f f i c i e n t  o f  t h e  double emulsion i s  p o s i t i v e .  Con- 
t a c t  with a surface w i t h  a h igh  surface tens ion  causes the  drops t o  
spread r a p i d l y  and t o  be p u l l e d  apar t .  
problems are d i f f e r e n t  from the  hydrodynamic s t a b i l i t y ,  they  
deserve f u r t h e r  study. 

Th is  phenomenon may have been 

Although these s t a b i l i t y  

MASS TRANSFER PROCESSES 

I n  dea l ing  w i t h  mass t r a n s f e r  i n t o  double emulsion drops, i t  i s  
advantageous t o  s i m p l i f y  the  double emulsion drop t o  the  spher ica l  
s h e l l  model as shown i n  Fig. 10. For a motionless double emulsion 
drop, the  subdrops are assumed t o  form one la rge  coalesced subdrop 
w i t h  the  l i q u i d  membrane phase forming a spher ical  s h e l l  o f  t h i c k -  
ness 6* around the  encapsulated phase. 
observed t h a t  when the  double emulsion drops are exposed t o  shear 
f low, the  subdrops undergo r o t a r y  f l ow  i n s i d e  the deformed double 
emulsion drop. 
spher ica l  s h e l l  model i s  s t i l l  appl icable,  except t h a t  (according 
t o  the  stagnant f i l m  approach o f  Whitman) the  l a y e r  th ickness would 
be reduced t o  a value 6. The spher ica l  s h e l l  model has met w i t h  
success i n  approximate t h e o r e t i c a l  model1 i n g  o f  t ranspor t  proc- 
esses, 43y44y45 and appears t o  be a reasonable physical  approxima- 
t i o n .  I n  the  spher ica l  s h e l l  model, under f l ow  condi t ions,  the  
concept o f  the summation o f  resistances can be appl ied.  I n  one 
simple model, t he  res is tance t o  mass t r a n s f e r  from t h e  continuous 

Stroeve e t  a l .  l8 ’’’ have 

When r o t a r y  f l o w  takes place the  assumption o f  the  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
3
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



50 STROEVE AND VARANASI 

Double Emulsion Drop Spherical Shell Model 

Figure 10: Simple spher ical  s h e l l  model o f  a double emulsion 
drop. 

phase t o  the  l i q u i d  membrane in te r face  i s  governed by one mass 
t rans fe r  c o e f f i c i e n t  and the  mass t r a n s f e r  from the  continuous/ 
l i q u i d  membrane i n t e r f a c e  i n t o  the  encapsulated phase by another 
mass t r a n s f e r  c o e f f i c i e n t  t ha t  i s  re la ted  t o  the  thickness 6 .  

The ove ra l l  resistance can be measured by monitor ing the  f l u x  o f  a 
passive d i f f u s a n t  i n t o  the  double emulsion drop. 

As mentioned i n  the  in t roduc t ion ,  the  use o f  reve rs ib le  c a r r i e r s  i n  
the  l i q u i d  membrane phase, w i t h  the  presence o f  reactants i n  the  
encapsulated phase t h a t  i r r e v e r s i b l y  consume t h e  d i f f u s i n g  species, 
has made double emulsions des i rab le  as separation systems. 
o f  c a r r i e r  compounds are shown i n  Fig. 11, Other c a r r i e r s  
described by Kobuke e t  a1.,46 Wong e t  a1.,47 Kopolow e t  a1 
Christensen e t  a1 . ,49 S t r z e l b i c k i  and Bartsch,” and Volke 
among others. The f i r s t  c a r r i e r  compound shown i n  Figure 

Examples 
have been 
48 

Y 

5 e t  al. ,  

1, 
p-octadecyloxy-m-chlorophenyl hydrazonemesoxaloni t r i l e  o r  OCPH, i s  

52 known t o  combine s e l e c t i v e l y  and reve rs ib l y  w i t h  hydrogen ions. 
The next two compounds have been used ex tens ive ly  i n  copper i o n  
e ~ t r a c t i o n , ~ ~  and the  l a s t  compound i s  known t o  complex w i t h  a var- 
i e t y  o f  cations.50 It i s  obvious from Fig. 11 t h a t  t h e . s e l e c t i v i t y  
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H 

/ C = N  

\ C E N  
# 

C18 H37 

p - octadeeyloxy - m - chlorophenyl - hydrazmemesoxalonibile 

LIX 63 

C9H19 

I 
OH 

LIX 65 N 

H OCH2 CO2 H 

H2C - CH2 

sym - Dibenzo - 13 - crown - 4 - oxyacetic acid 

Figure  11 : Examples o f  c a r r i e r  compounds, 

o f  the c a r r i e r  compound depends t o  a l a rge  ex ten t  on the complexi ty 
o f  i t s  chemical s t ruc tu re .  

The in t roduc t i on  o f  c a r r i e r s  i n t o  the  l i q u i d  membrane o f f e r s  the  
possi  b i  1 i ty  o f  c a r r i  e r - f a c i  1 i t a t e d  t ranspor t ,  co-transport ,  o r  
counter- t ransport  mechanisms t o  p lay  a ro le .  Fig. 12 shows schem- 
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52 STROEVE AND VARANASI 

A 

Facilitated Transport Co - Transport Counter - Transport 

Figure 12: Schematic example o f  f a c i l i t a t e d ,  co- and counter- 
t ranspor t  occurr ing i n  the l i q u i d  membrane, 

a t i c  representat ions o f  these t ranspor t  processes occur r ing  i n  the 
model o f  spher ical  s h e l l s  f o r  t he  l i q u i d  membranes w i t h  thickness 
6. It i s  assumed t h a t  the  i n t e r i o r  concentrat ion o f  the  d i f f u s i n g  
species CA6 i s  uniform, due t o  i n t e r n a l  mixing and/or rap id  i r r e -  
ve rs ib le  reac t ion  i ns ide  the  encapsulated phase. 

I n  the  case o f  very r a p i d  reve rs ib le  chemical reac t i on  ra tes  r e l a t i v e  
t o  d i f f u s i o n  rates,  t he  chemical reac t i on  i n  the  l i q u i d  membrane 
phase can be assumed t o  be a t  equ i l ib r ium.  I f  a mobile c a r r i e r  B i s  
present w i t h i n  the  membrane phase and i f  the  c a r r i e r  reacts revers- 
i b l y  w i t h  the  d i f f u s i n g  species 

The t o t a l  t ranspor t  o f  A a t  steady s t a t e  can be given by53 

6 K1 'TkA CA0 - CA 

' DAB (1 t K1 kAC:)(l + K1 k A C t )  6 
J = DAkA ") 

(2) 
(where the  membrane thickness i s  e i t h e r  6 o r  6*). 
Eq. 2 i s  an example o f  c a r r i e r - f a c i l i t a t e d  t ranspor t .  Several 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 53 

assumptions were made in arriving a t  E q .  2 ,  including the 
assumption of equal d i f fus iv i t ies  for  the car r ie r  and the complex, 
and that  6 i s  much smaller than the radius ( a )  of the double emul- 
sion. 
u s i n g  a planar geometry. 
obtained for  co-transport when, for  example, the reaction 

In the l a t t e r  assumption, the problem can be simplified by 
A similar simple expression can be 

A + C + B $ A C B ,  K p  ( 3 )  

can be assumed t o  be a t  equilibrium. 
steady s t a t e  i s  given by54 

The total  flux of solute A a t  

J = DAkA (CAD: ‘AS) 

Again the assumptions of equal diffusivi ty  for  car r ie r  and complex 
species, and planar geometry ( 6  << a )  have been made to  obtain 
Eq .  4. For the case of counter transport as shown in Fig.  11 with 
the reactions 55 

A t B z AB, KA 

C + B C B ,  KC 

the steady-state flux of A i s  

6 6 
CAo - CA - ‘A 

6 ’ D ~ ~ R k ~  6 J = DAkA 

c;cc6 - CA6CC0 

D ~ ~ K ~ R k ~ k ~  6 
( 7 )  
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where 

STROEVE AND VARANASI 

and 

OB OAB OCB 

The determination of the  f lux  o f  the species A f o r  f a c i l i t a t e d  
o r  coupled t ranspor t  systems i s  simple i f  chemical equ i l i b r i um can 
Be assumed. 
ca l  reac t ion .  The f l u x  i s  obtained by so lv ing  the  d i f f e r e n t i a l  
mass balances f o r  a l l  species invo lved i n  the  d i f f u s i o n  process 
subject  t o  the  appropr iate boundary condi t ions.  I n  many d i f f u s i o n -  
chemical reac t ion  problems, equ i l i b r i um can be sa fe l y  assumed i f  the  
chemical reac t ion  ra tes  are f a s t  r e l a t i v e  t o  d i f f u s i o n  ra tes .  This 
s i t u a t i o n  i s  o f ten  encountered w i t h  i o n i c  assoc ia t ion-d issoc ia t ion  
react ions,  which are very fast .  When chemical reac t i on  ra tes  are slow, 
the  simple equ i l i b r i um so lu t i ons  are no t  appl icable.  Also when the  
l i q u i d  membrane f i l m  becomes very t h i n ,  as f o r  f u l l y  packed double 
emulsion drops o r  double emulsion drops undergoing shear, t he  
assumption o f  chemical reac t i on  equ i l i b r i um may become tenuous due 
t o  la rge  d i f f u s i o n  rates.  The more d i f f i c u l t  problem o f  d i f f u s i o n  
w i t h  non-equi l ibr ium chemical reac t i on  needs then t o  be considered. 

I n  general, these are problems o f  d i f f u s i o n  w i t h  chemi- 

Theoret ical  d i f f i c u l t i e s  a lso  a r i s e  when the geometry i s  no longer 
planar and when the unsteady s t a t e  problem becomes important. 
o f  these problems w i  11 be considered ind i v idua l  l y  . Reference w i  11 
be made t o  the  case o f  f a c i l i t a t e d  t ranspor t  bu t  the  discussion i s  
app l i cab le  t o  coupled t ranspor t .  

Each 

When chemical reac t ion  ra tes  are  n o t  many orders o f  magnitude l a r g e r  
than d i f f u s i o n  rates,  t h e  reve rs ib le  chemical reac t i on  can no longer 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 55 

be assumed t o  be a t  equ i l i b r i um throughout the  l i q u i d  membrane. 
s ide r  as an example the  reac t i on  given by Eq. 1 which f o r  f i n i t e  
reac t ion  ra tes  i s  

Con- 

kl kl 
k 2  k2 

A + B  2 AB, K = -  

This reac t ion  i s  chosen t o  be i l l u s t r a t i v e  and i t  i s  assumed t o  
fo l l ow  the  k i n e t i c s  suggested by stochiometry. Again the  c a r r i e r  
species B and t h e  complex species AB a re  constrained t o  remain i n  
the  l i q u i d  membrane. 
i s  g l o b a l l y  zero and the  problem i s  t o  p red ic t  the  f l u x  o f  A. 
d i f f e r e n t i a l  mass balances are 

For the  steady s t a t e  case the  ove ra l l  reac t ion  
The 

The boundary condi t ions are t h e  imposed concentrat ions o f  A a t  each 
s ide  o f  t he  membrane, and the  impermeabi l i ty  t o  c a r r i e r  and complex 
species. So lu t ion  o f  Eq. 9 i s  simple i f  chemical reac t i on  e q u i l i b -  
r ium e x i s t s  s ince the le f t -hand side reduces t o  the  equ i l i b r i um 
re la t i onsh ip .  For f i n i t e  k i n e t i c s ,  t he  d i f f e r e n t i a l  mass balances 
are non- l inear and d i f f i c u l t  t o  solve unless approximations are 
made. I n  the case o f  equal d i f f u s i v i t i e s  f o r  the  c a r r i e r  and com- 
p lex  species the  t o t a l  steady s t a t e  f l u x  o f  A i s  

J = - D k  dCA - - D A B -  d C ~ ~  
dx dx 

In teg ra t i on  o f  Eq. 10 between x = 0 and x = 6 y i e l d s  
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56 STROEVE AND VARANASI 

I n  the  case o f  very f a s t  k i n e t i c s  o r  very slow d i f f u s i o n  ra tes  
(which i s  equivalent t o  t h i c k  membranes 1, the  reac t i on  
approaches equ i l ib r ium.  
can there fore  be r e l a t e d  t o  the  concentrat ion o f  A (expressed here 
i n  terms o f  the  aqueous phases: continuous o r  encapsulated) by 
using t h e  equ i l i b r i um re la t i onsh ip  t o  y i e l d  Eq. 2. This equation 
can be rewr i t t en  as 

The concentrat ion o f  t he  complex species 

6 
CA0 - CA 

J = DAkA (1 + Feq) 
6 

where F i s  c a l l e d  the  f a c i l i t a t i o n  f a c t o r .  F i s  a maximum when 
the  reac t i on  i s  a t  equ i l ib r ium:  

When the  reac t ion  deviates from equ i l i b r i um w i t h i n  the  l i q u i d  mem- 
brane, t he  f a c i l i t a t i o n  fac to r  F i s  l ess  than F An exact solu- 
t i o n  o f  Eq. 9 i s  no t  possible, bu t  several approximate so lu t ions  o f  
h igh accuracy are ava i lab le  i n  the  l i t e r a t u r e .  It i s  no t  t he  pur- 
pose o f  t h i s  a r t i c l e  t o  review developments i n  non-equi l ibr ium 
f a c i l i t a t e d  t ranspor t  s ince many exce l l en t  t rea t i ses  are a v a i l -  
able, 56a57*58'59 but  a b r i e f  synopsis w i l l  be given. Approximate 
a n a l y t i c a l  so lu t ions  have been given f o r  the two extreme regimes: 
i )  t he  near -d i f fus ion  regime o r  t h i n  l i q u i d  membrane, and ii) the 
near-equi l ibr ium regime o r  t h i c k  1 i q u i d  membrane. The usual param- 
e te rs  t h a t  d i s t i ngu ish  these two regimes are e i t h e r  the  Damkahler 
number, y, o r  t he  modif ied Th ie le  modulus, +, 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 57 

where 6 i s  the  t y p i c a l  reac t i on  ra te .  
a reac t i on -d i f f us ion  l eng th  scale6' and i s  given by 

The c h a r a c t e r i s t i c  leng th  i s  

CD A =  - e 

A la rge  Damkohler number character izes the  near-equil  i b r i um regime 
where the  chemical reac t i on  ra tes  are much grea ter  than d i f f u s i o n  
ra tes  ( " t h i c k  f i l m " )  and the  t o t a l  f l u x  o f  species A approaches i t s  
maximum value corresponding t o  chemical reac t i on  equ i l i b r i um (Eq. 12). 
A small Damktlhler number character izes the  near -d i f fus ion  regime 
( " t h i n  f i l m " )  where t h e  d i f f u s i o n  ra tes  are much grea ter  than 
chemical reac t i on  rates.  
f a c i l i t a t i o n  f a c t o r  F approaches zero (no reac t ion)  and i n  the  l i m i t  
o f  y + m the f a c i l i t a t i o n  f a c t o r  F approaches F (equ i l i b r i um reac- 
t i o n ) .  Ana ly t i ca l  so lu t ions  f o r  Eq. 9 are o f t e n  given i n  terms o f  
F and so lu t ions  are ava i l ab le  f o r  small Damkohler numbers 
and la rge  Damkohler numbers. 62*64y65,66'67 The steady s t a t e  f l u x  o f  

A i s  then given simply by 

Consequently, i n  t h e  l i m i t  o f  y + 0, the  

eq 

61,62,63 

6 
J = DAkA cAo - 

6 
(1  t F) 

However, t he  intermediate range o f  Damkohler numbers Is o f t e n  
important and the  above so lu t ions  f o r  F are then n o t  capable o f  
g i v i n g  accurate p red ic t ions .  

Recently Hoofd and Kreuzer 68'69,70 presented a new s o l u t i o n  cons is t -  

i n g  o f  the  sum o f  the  separate so lu t ions  f o r  both t h i n  and t h i c k  
membranes. 
"small Damkohler number so lu t i on "  and the " la rge  Damkohler number 
so lu t ion" .  The i r  new s o l u t i o n  i s  known as the  "combined Damkshler 
number so lu t ion" ,  and they have shown t h a t  i t  can g i ve  accurate pre- 
d i c t i o n s  o f  the  f a c i l i t a t i o n  f a c t o r  over the  whole range o f  Damkoh- 
l e r  numbers(0 - < y 5 m ) .  

Hoofd and Kreuzer c a l l e d  the  two separate so lu t i ons  t h e  

The s o l u t i o n  i s  a lgeb ra i ca l l y  r e l a t i v e l y  
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58 STROEVE AND VARANASI 

simple so t h a t  w i t h  i t s  accuracy i t  i s  the  method o f  choice f o r  
reac t i on -d i f f us ion  problems. As y e t  i t  has n o t  been app l ied  t o  non- 
equ i l i b r i um s i t u a t i o n s  o f  co- o r  counter- t ransport ,  nor  t o  l i q u i d  
membrane separations i n  general. 

The combined Damkiihler number s o l u t i o n  can be der ived f o r  t he  case 
o f  the reac t ion  given by Eq. 8. The v a r i a t i o n  o f  the  concentrat ion 
o f  species A i s  given by 

where e i s  t he  carr ier-dependent p a r t  and f ( x )  i s  the  pos i t i on -  
dependent par t .  The funct ion f serves as a co r rec t i on  f o r  the  l a rge  
Damkiihler number so lu t ion ,  and i t  i s  solved over the  e n t i r e  th i ck -  
ness o f  t he  membrane. The func t ion  e i s  solved as i f  f = 0, and f 
i s  solved f o r  t he  cond i t ion  near the  boundaries, where 

d C ~ ~  - 0 f o r  x = o,6 dx 
dCB xi-=-- 

since the  c a r r i e r  i s  constrained t o  remain i n  the  membrane. The 
so lu t ions  f o r  e and f are o f  t he  form 

k ~ C ~ ~  e(C,) = - 
k l C B  

Jx  s inh  ((i 6 - x) / A )  

DA cosh( 6/x) 
f ( x )  = - - (19) 

where 

kiC~ t-t- kz k ~ C ~ ~  

D~ D~~ D ~ C ~  

1 
? = -  

The f l u x  i s  given by Eq. 11. For each s i t u a t i o n  o f  f i x e d  concentra- 
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TRANSPORT PROCESSES IN L I Q U I D  MEMBRANES 59 

t i ons  CAo and CA6, a unique s o l u t i o n  f o r  Eqs. 17 through 20 and 

Eq. 11 ex i s t s ,  which can be found by a t r i a l -and -e r ro r  so lu t ion .  
It i s  obvious t h a t  when 3 i s  known, the  f a c i l i t a t i o n  f a c t o r  can be 
obtained from Eq. 16. 

Most of t he  so lu t ions  f o r  non-equilibrium-facilitated t ranspor t  
have beeh given f o r  planar geometry, and consequently f a c i l i t a t i o n  
factors are fo r  f l a t  membranes. Double emulsions are spher ical  
instagnant media and e l l i p s o i d a l  when d i s t o r t e d  by uni form shear. 
When the l i q u i d  membrane thickness, 6 o r  6*, becomes s i g n i f i c a n t  
r e l a t i v e  t o  drop radius, a, t he  appropr iate geometry has t o  be taken 
i n t o  account. 
f a c i l i t a t e d  t ranspor t  i n  heterogeneous media, have given non-equ i l i -  
brium f a c i l i t a t i o n  fac to rs  f o r  reac t i ve  spheres and cy l i nde rs  
placed i n  a f i e l d  o f  un id i rec t i ona l  f l u x .  
p o i n t  l i n e a r i ~ a t i o n ~ ~  was used t o  ob ta in  the  f a c i l i t a t i o n  fac to rs .  
Since t h e  spheres and cy l i nde rs  were i n  a f i e l d  o f  u n i d i r e c t i o n a l  
f l u x ,  t he  species concent ra t ionsat  t he  surfaces o f  these shapes are 
n o t  uniform. 
concentrat ion CAo , which there fore  gives r i s e  t o  a d i f f e r e n t  bound- 
a ry  condi t ion.  
f o r  spher ical  and c y l i n d r i c a l  l i q u i d  membranes. A reac t i on  o f  the  
form given by Eq. 8 was considered f o r  reac t i on  equ i l i b r i um and the  
near -d i f fus ion  regime. 
bined Damktjhler technique t o  the  case o f  a ves i c le  embedded i n  a 
continuum w i t h  uni form d i s t r i b u t i o n  o f  species A. The ves i c le  
geometry was analogous t o  the  spher ica l  s h e l l  model f o r  a double 
emulsion drop. 
s h e l l  was o f  the  form 

Stroeve and Eagle,71 who considered the  problem o f  

The technique o f  s ing le -  

For double emulsions, t he  drops experience a uni form 

Noble73 has analyzed the problem o f  shape fac to rs  

Hoofd and Kreuzer7' have app l ied  the  com- 

The reac t ion  considered t o  occur i n  the spher ical  

kl 

k2 
A Z B  

An example o f  t h i s  reac t i on  i s  where species B i s  produced by 
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60 STROEVE AND VARANASI 

binding o f  A t o  a very abundant mobile c a r r i e r .  Species B cannot 
d i f f u s e  through t h e  boundaries o f  t he  membrane. An i r r e v e r s i b l e  
reac t i on  occurred i ns ide  the  encapsulated phase so t h a t  CA could 
be taken as constant. For spher ical  geometry, and the  reac t i on  
given by Eq. 21, Eq. 17 becomes 

Solut ions f o r  e and f were given by Hoofd and Kreuzer as 

w i t h  

-% 

The constants A1 and A2 are i n t e g r a t i o n  constants. The concentra- 
t i o n s  o f  the  c a r r i e r  and complex species i n  the  l i q u i d  membrane are 

kACA = k 2(3 A t - ?) + - ‘!a:’ f ( r )  

CB = k [  + $ - q f ( r $ ’  A* 
1 3  

where A3 and A4 are again i n teg ra t i on  constants which are determined 
by the  boundary condi t ions associated w i t h  the  problem. 
and CB a re  known the  f l u x  can be calculated. 

Recently H ~ o f d ~ ~  has a l so  solved the  problem f o r  the reac t i on  given 

Since CA 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 61 

by Eq. 8 occur r ing  i n  the  spher ical  s h e l l  exposed t o  a uni form con- 
cent ra t ion  CAm a t  r = -. The s i t u a t i o n  i s  schematical ly depicted i n  
Figure 13, Species A a r r i ves  a t  the  continuous phase/ l iquid mem- 
brane i n t e r f a c e  by d i f f u s i o n .  The species i s  consumed ins ide  the 
encapsulated phase so t h a t  CA6 = 0 (note: 6 o r  6* i s  equal t o  R2 
minus Rl). The s o l u t i o n s f o r e  and X are i d e n t i c a l  t o  Eqs. 18 and 
20, wh i le  the  so lu t i on  f o r  f i s  

f ( r )  = 

The t o t a l  steady s t a t e  f l u x  o f  A i s  obtained from 

J 
= A 1 - -  r 

where A1 i s  an i n t e g r a t i o n  constant. The problem i s  now reduced t o  
f i n d i n g  boundary values f o r  CA and CAB so t h a t  C i  = 0 a t  r = R1, 
CAo = CAm - J/DA*R2 a t  r = R2, and the  mean value o f  CB t CAB i s  
equal t o  CT. Presumably the same approach as described by Hoofd 
can be taken i f  the  continuous phase i s  s t i r r e d .  The mass t r a n s f e r  
r a t e  o f  A a r r i v i n g  a t  t h e  spher ical  s h e l l  i s  then governed by the  
mass t rans fe r  c o e f f i c i e n t  on the  continuous phase side. I f  i n t e r n a l  
r o t a t i o n  takes place i ns ide  the  drop the  thickness 6" i s  subs t i t u ted  
by 6 which i s  r e l a t e d  t o  the  i n t e r n a l  mass t r a n s f e r  c o e f f i c i e n t  i n  
the  l i q u i d  membrane. Such theo re t i ca l  studies have n o t  y e t  been 
conducted and they need experimental v e r i f i c a t i o n .  

Folkner and Noble75 have considered the  t rans ien t  response o f  f a c i l -  
i t a t e d  t ranspor t  membrane. The t rans ien t  f l u x  o f  the penean t  spe- 
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A 

Figure 13: Schematic diagram o f  one-dimensional spher ical  coor- 
dinates f o r  f a c i l i t a t e d  t ranspor t ,  

c i es  was determined f o r  f l a t  p la te ,  spher ica l ,  and c y l i n d r i c a l  
geometries. The reac t i on  scheme given by Eq. 8 was considered. 
Computer so lu t ions  of t he  d i f f e r e n t i a l  mass balances were obtained 
and the f l u x  J and f a c i l i t a t i o n  f a c t o r  F determined from t h e  con- 
cen t ra t i on  p r o f i l e s .  The f a c i l i t a t i o n  f a c t o r  F was p l o t t e d  as a 
func t i on  o f  t ime and the  Damk6hler number. Use o f  t he  char ts  
al lows f o r  the determinat ion o f  the  t ime t o  reach the  steady s t a t e  
value o f  F when the  boundary cond i t ions  remain f i xed .  A t  present 
no ana ly t i ca l  so lu t ions  are ava i l ab le  t o  p r e d i c t  unsteady f a c i l i -  
t a t e d  t ranspor t  i n  l i q u i d  membrane systems. 

I n  the l a s t  decade considerable in fo rmat ion  has been obtained on 
t ranspor t  processes i n  unsupported l i q u i d  membranes. However, t he  
use o f  double emulsions as separat ion systems i n  i n d u s t r i a l  pro- 
cesses w i l l  requ i re  t h a t  add i t i ona l  fundamental s tud ies  be made on 
the  t ranspor t  cha rac te r i s t i cs  o f  these systems. I n  p a r t i c u l a r ,  
t heo re t i ca l  models on the  hydrodynamic s t a b i l i t y  o f  double emulsion 
drops t o  viscous and i n e r t i a l  forces are lack ing .  Experimental data 
are necessary t o  conf i rm the use o f  such models f o r  p r e d i c t i v e  ap- 
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TRANSPORT PROCESSES IN L I Q U I D  MEMBRANES 63 

p l i c a t i o n s  i n  mixing equipment. 
supported membranes are reasonably we1 1 understood, 
emulsion separation systems the  in f luence o f  s t i r r i n g  ra tes ,  volume 
f r a c t i o n  o f  subdrops, the k i n e t i c s  of the i r r e v e r s i b l e  react ion,  
i n t e r f a c i a l  tension and v i s c o s i t y  parameters on t ranspor t  i n  the  
presence o f  chemical reac t ions  i s  n o t  known. Some authors contend 
t h a t  t he  stagnant l i q u i d  membrane f i l m  was the  c o n t r o l l i n g  r e s i s t -  
ance t o  mass t rans fe r  i n  t h e i r  studies.44 Idor i s  i t  known i f  the  
conclusion appl ies genera l l y  t o  a l l  systems. Approximate values 
f o r  the thickness o f  the  l i q u i d  membrane have been given45s76 b u t  
these values are probably app l i cab le  on ly  t o  the p a r t i c u l a r  double 
emulsion systems studied. 

chemical equ i l i b r i um ex is ted  f o r  the  reve rs ib le  chemical react ions 
i n  the l i q u i d  membrane phase. 
v a l i d  f o r  i o n i c  assoc ia t ion-d issoc ia t ion  react ions,  non-equi l ibr ium 
e f fec ts  may be very important i n  o ther  reac t i on  systems. The com- 
bined Damkohler technique appears t o  be most promising i n  the app l i -  
ca t ion  t o  the problems i n  t ranspor t  w i t h  chemical reac t i on  i n  dou- 
b l e  emulsion separat ion systems. 

Mass t ranspor t  processes f o r  f l a t  
For double 

Most o f  the  studies have assumed t h a t  

Although t h i s  assumption i s  o f ten  

NOMENCLATURE 

Constants o f  i n t e g r a t i o n  ( i  = 1 t o  4) 

Radius o f  double emulsion drop a = R2 
Ai 
a 

C Concentrat ion 

Concentrat ion o f  species A expressed r e l a t i v e  t o  an aque- 
ous phase, i.e. the continuous and the encapsulated phases 

Total carr ier-plus-complex concentrat ion i n  the  l i q u i d  
membrane 

D i f f u s i v i t y  o f  species i n  the  l i q u i d  membrane 

D i f f u s i v i t y  o f  species A i n  the continuous phase 

cA 

cT 

D 

DA* 
e Carrier-dependent func t i on  

F F a c i l i t a t i o n  f a c t o r  
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F 

f 
eq 

G 

J 

K1 

K2 

KA 

KC 

Equi 1 i b r i  um f ac i  1 i t a t i  on fac to r  

Posi tion-dependent funct ion 

Shear r a t e  

Flux o f  species A 

Equi l ibr ium constant for  chemical react ion 

Equi l ibr ium constant f o r  chemical react ion 

Equi l ibr ium constant f o r  chemical react ion 

Equi l ibr ium constant f o r  chemical react ion 

Equi l ibr ium d i s t r i b u t i o n  coe f f i c i en t  f o r  species A between 
l i q u i d  membrane phase and aqueous phase (continuous o r  
encapsulated) : 

kA 

C, ( l i q u i d  membrane) I 

Equi l ibr ium d i s t r i b u t i o n  coe f f i c i en t  f o r  species C 

Forward k i n e t i c  ra te  constant 

Backward k i n e t i c  ra te  constant 

Viscosi ty r a t i o  o f  dispersed phase t o  continuous phase 

Function defined below equation 7 

Radius o f  s ing le subdrop o f  coalesced encapsulated phase, 
o r  radius o f  i n te rna l  region which i s  assumed t o  be wel l -  
mixed due t o  ro ta ry  flow, 

Radius of double emulsion drop 

kc 
kl 

k2 

P 

R 

R1 

R2 
r Radial coordinate 

X Cartesian coordinate 

- Greek Symbols 

Y Damkijhler number 

6 Thickness o f  hypothetical l i q u i d  membrane f i l m  adjacent 
t o  in ter face 
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TRANSPORT PROCESSES IN LIQUID MEMBRANES 65 

6* 

E 

Thickness o f  l i q u i d  membrane f i l m  6* = R 2  - R1 

Rat io  o f  app l ied  viscous fo rce  t o  surface tension force, 
o r  breakup parameter, E = (Guca)/a 

Breakup parameter f o r  drop t o  bu rs t  

Rat io  o f  moles o f  t r a c e r  species i n  the  continuous phase 
t o  the t o t a l  amount i n i t i a l l y  i n  the  encapsulated phase 
(due t o  l i q u i d  membrane breakage) 

EB 

5 

e Reaction r a t e  

A Charac te r i s t i c  1 ength o r  reac t ion-d i  ff usion length  scale 

V iscos i t y  o f  t he  continuous phase 

V iscos i ty  o f  t he  dispersed phase 

Apparent v i s c o s i t y  o f t h e  W/O emulsion 

membrane phase 

VC 

pd 

Vd 
U I n t e r f a c i a l  tension between continuous phase and l i q u i d  

- 

Subscripts 

A Species A 

AB Species AB 

B Species B 

BC Species BC 

C Species C (expressed r e l a t i v e  t o  an aqueous phase) 
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